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STRATEGIES FOR HANDLING MISSING
DATA

Complete Case Analysis ( Available Case Analysis)

Single Imputation

Multiple Imputation



DEVELOPMENT OF MULTIPLE

IMPUTATION
1987: Inception Donald. B. Rubin 2008: mice in R, Van Buuren
1987: 1t edition of Statistical Analysis 2011: Amelia was released in R

with Missing Data by Little and Rubin
1997: NORM, Schafer
1999: MICE- concept, Van Buuren

2012: Ml in Stata
2016:mice in multilevel data, lan White
2017: jomo in R, Carpenter & Quartagno

2002: SAS implemented the mi routine PO i), Wi Aty



MULTIPLE IMPUTATION
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CHOICES TO MAKE BEFORE YOU IMPUTE

Mechanism of Missingness




CHOICES TO MAKE BEFORE YOU IMPUTE

Structure of Imputation Model




CHOICES TO MAKE BEFORE YOU IMPUTE

Selecting Predictors for the Imputation

Model




CHOICES TO MAKE BEFORE YOU IMPUTE

Imputing Derived Variables




CHOICES TO MAKE BEFORE YOU IMPUTE

Number of Imputations



CHOICES TO MAKE BEFORE YOU IMPUTE

Order of Imputations



RECIPE FOR IMPUTATION

Define the most general analytic model to be applied to imputed data
The target variable is the variable with the missing values

Select a method that imputes close to the data

Include all level-1 variables and their cluster means

Include all level-2 predictors

Include any interactions implied by the model

Exclude any terms involving the target variable




METHODS OF IMPUTATION - FCS/ MICE

Can be used for datasets containing both continuous and categorical data.
Defines an imputation model on a variable by variable basis —> great for datasets with complex structures
The method also allows the researcher to account for the complexities observed in the data, in the imputation model.

Consider a scenario with 3 partially missing covariates namely X;,X, and X; and outcome variable Y is
complete. Here, X; = [X;Ms ;X,905]; X, = [X,MiS ;X,005] & X,=[X;mMis; X;005]
Iteration (1):
H{l) f{ﬁljf{ bs‘iobs obs . HIJ

Irlm's{lJ' — f{ mfs| I_ob abs . E}[U‘J

0~ f(02).f(x2|27 . xSy 6y)

I?nﬁ&fl:l f{r?n15| iﬂbﬁ‘fl]} Igbg Hgljj

I:]J — f(ﬁ \J f( abs| Obsr”. ) 0(:-3{1] . 93)

Q.an - f( mzs'| Iobs{l‘]- Igﬁs{ljl Y. 9_{;1})



METHODS OF IMPUTATION - JOMO

Defines a multivariate joint model for all variables in the dataset for imputation of missing values in the outcome.
Outcome here refers to the variables in the model with missing values and not the outcome of the analysis model.

Suppose we have variables Y, and Y, are partially observed andY; and Y, are variables with no missing data, then the
simplest joint model is the multivariate normal model given by:

Yii= B+ BuiYsi + BaYs: +er
= Bo1 + P11 Ysi + B Ya: + o

(’5“) ~ N(0,0)
€2,i

Jomo used the Gibbs Sampling approach by consistently drawing new values for all parameters i.e. the fixed
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effects (), the covariance matrix and the missing data.

The current draw of missing values is combined with the observed data to make the first imputed dataset
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ANALYSIS MODEL

- e s - T - . AT Q
}/?ljh‘ = ,Ejgj;; + jj]j;;( ijF:_Xjk} + Ez’jk-. Eiji[; ~ N (U, a :}
.-"jﬂjk = Yook T ’“.f"ﬂl{zjk — Z;;) + ’“.f"u:rz{x__;rk — }_:e:) + Tojks Tojk ™ N(0,7,)
B1j = Yo

Yook = G000 + doo1 (W) + took; woox ~ N(0,T,)

Substitutine, we et

Here,i=1,2, .n4,j =12, .n; & k=12, . K.



DEMONSTRATION

€iik rnorm(n =i* j* k, mean =0, sd = 1)

Tk rep(rnorm(n = k % j,mean = 0, sd = 1), each = 1)

ook rep(rnorm(n = kE,mean =0, sd = 1), each = i * j)

Coefficients | gooo = 2. groo = 2.5, Gogo = 2.5, goro = 2, gopp = 3

Yiik dooo + Tiol Xije — X)) + v Xik — X)) + vo1({ L5k — Zk) + dooa Wi +
ook + Tojk + €ijk

Xiik rsnin =i* jxk, ri =70, omega = 20, alpha = 10)

ik rep(ripois(j = k., lambda = 3, a = 2, b = 25), each = i)

Wi rep(ripois(k, lambda = 3,a = 2,b = 10), each = i * j)

Correlated

Variables:

Z rtruncnorm(n =i+ j £+ k,a = 59, b = 396, mean = 114.8, sd = 14)

Xa (0.6) = X;jk + sgrt(l — 0.6) = Z; correlation = 0.63

Z rep(ripois(j = k lambda =58 a=1.b=41), each =i

2oy (0.87) * Zjk + sgrt(l — 0.87) * £1; correlation = 0.7




ANALYSIS ON ORIGINAL DATASET

Table 3: Analysis of the complete (simulated) dataset

Fized Effect Coefficient se p-value
Intercept 1.851 0.618 < 0.001
Xijk — Xji 2.5 4.385¢~% < 0.001
i — Xi 2.498 1.767¢% < 0.001
Zik — Zy 2.001 8.341e7%2 < 0.001
Wi 3.070 3.712¢7 92 < 0.001
Random Effects Variance Std. Dev

Level 3 effect (ugo) 0.9969 0.9984

Level 2 effect (ro) 1.0354 1.0176

Level 1 effects (e;;) 0.9996 0.9998




INTRODUCING MISSING

DATA

e Probability of MAR in Xj;; was determined by model

X2 HBYs (Y — E(Y)) X,y — E(X5)
. where Y, = & X, =
14 eXarav,” EE e T T DY) 2= T SD(Xy)

e Probability of MAR In Z;; was determined by model

EEZS-'_'SY; . where }*"’ . {}G‘k E(}j};ﬂ):} _ — E(Zg:]
1 + eZ2+PY," : SD(Yjk) SD(Zs)

e Probability of MAR in W} was determined by model

e2+hY: (Yi — E(Yx))
- where Y, = _
14 e2rpvss HETE Ts SD(Y)

Scenario 1: 20% Missing in both Xix and Zy

Scenario 2: 20% Missing in both X, Z; and Wy

jko

Scenario 3: 50% Missing in both X, & Z;, and 20% Missing in W,
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Available Case Analysis

Scenario - 3

(n = 11,083)

Fized Effect Coefficient se p-value
[Tntercept 218 0.703 < 0.001

KXijk — Xjk 2.495 1.801e % < 0.001

Xk — Xi 2.597 8.866e792 < 0.001

Zi — 7 2.024 2.159¢ %2 < 0.001

Wi 2.784 0.143 < 0.001

Random Effects Variance Std. Dev

Level 3 effect (ugor) 1.012 1.006

Level 2 effect (rg;z) 11.701 3.421

Level 1 effects (e;;1) 1.010 1.005

MICE
IOMO

Scenario - 2 = Scenario - 3

Fized Effect Coefficient se p-value  Fized Effect Coefficient se p-value
[Intercept 1.655 0.178 < 0.001 [Imtercept T877 0.7640 < 0.001

Xiik — Xk 1.775 0.008 <0.001 X — X 1.876 0.0396 < 0.001

Xk — Xi 1.7637 0.0109 <0001 X, —X; 2.407 0.0432 < 0.001

Zix — Zy 1.763 0.0781 <0.001 Zjx— Z 2.9681 0.2130 < 0.001

Wi 3.0701 0.0404 < 0.001 W, 2.5492 0.1730 < 0.001

Random Elffects Variance Random Effects Variance Std. Dev

Level 3 effect (ugox) 2.5263 Level 3 effect (uggy) 2.0894¢ 14

Level 2 effect (rq;i) 1.3098¢ — 13 Level 2 effect (rg;1) 0.7294

Level 1 effects (e;r) 1.0943 Level 1 effects (e;;1) 7.622




Diff- Imputed

Comparison between Observed & imputed values of d_st_c
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THANK YOU!




DISADVANTAGES

Disadvantages of JoMo:- Considering a joint model on variables subject to
missingness may not always be feasible or even realistic. For example, con-
sider a survey with items targeted at different sub-populations; e.g. item
asking respondents when was their last pap smear or item asking respon-
dents the number of cigarettes smoked in the last 24 hours. This could apply
to even questionnaires with a skip pattern. Imposing a joint distribution
when a joint distribution may not even exist is not practicable. There are
several cases when a joint modelling strategy may not work such as when
variables have nominal, count or semi-continuous variables (Yucel, 2008).
Thus researchers must remain cautious when choosing the right method of
imputation bearing these factors in mind.

Disadvantages of FCS:- Although an appealing method of imputation, FCS
1s not without its limitations. The method 1s based on the assumption that
the data is missing at random (MAR). Secondly, each conditional distribution
needs to be specified separately. This would result in substantial modelling
especially for datasets with many variables. The technique is more compu-
tationally challenging compared to joint modelling.



