

First Australian estimates of education-related inequalities in cause-specific mortality

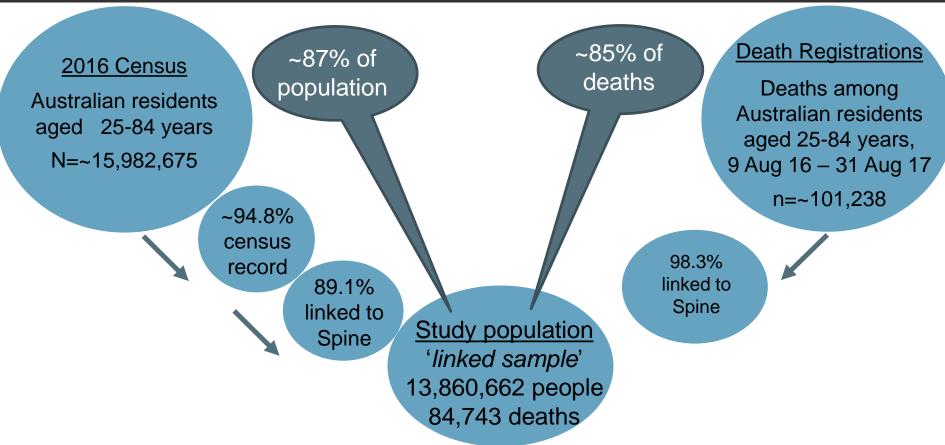
Jenny Welsh | Research Fellow, Australian National University

On behalf of: Grace Joshy, Lauren Moran, Kay Soga, Hsei-Di Law, Danielle Butler, Karen Bishop, Michelle Gourley, James Eynstone-Hinkins, Heather Booth, Lynelle Moon, Tony Blakely, Emily Banks, Rosemary Korda for the *Whole of Population Linked Data Team*

DATA FOR BETTER HEALTH

Background

- Socioeconomic inequalities in mortality in all high-income countries
- OECD recommends monitoring these inequalities with linked census-mortality data, using education as the measure of socioeconomic position (SEP)
- Historically, these data not available for Australia. However, MADIP makes this possible


Aim: To quantify education-related inequalities in cause-specific mortality for Australia using census linked to death data

Overview of methods

- Data: Linked 2016 Census and Death Registrations (2016-17), available through MADIP
- Sample: Australian residents aged 25-84 years, completed census + linked to Spine
- Exposure: Education, taken from Census, comparing 'low' (no quals) & 'intermediate' (high school +/- other quals) to 'high' (tertiary education)
- Outcomes: Cause-specific mortality (ICD-10 codes), focus on leading causes of death
- Analyses:
 - 1. Validation of linked data
 - 2. Regression to estimate inequalities in mortality

Validation of linked data

Compared *linked sample* to *whole Australian population* in regards to:

- Mortality rates
- Inequalities estimates (area-based measure of SEP)

If mortality rates differ:

- Apply external estimates to estimate rates/ rate differences
- Doesn't necessarily bias relative measures, so long as difference is consistent with respect to SEP

If (area-based) *inequality estimates* are biased:

Need to understand for who, in which direction, by how much

Mortality rates in sample different to rates in population

Mortality rates (per 100,000) for men

<u> </u>	·
	Australian
	population, 2016*
Age group (years)	
25-34	74
35-44	136
45-54	278
55-64	626
65-74	1478
75-84	4457

*Reported by ABS 6

➤ Mortality rates in sample *different* to rates in population

Mortality rates (per 100,000) for men

	Australian population, 2016*	Linked Sample	% difference
Age group (years)	population, 2010	Jampie	difference
25-34	74	59	-20.8
35-44	136	112	-17.8
45-54	278	237	-14.8
55-64	626	587	-6.2
65-74	1478	1510	2.2
75-84	4457	4592	3.0

*Reported by ABS 7

Men						
	ASMR*					
	Full death file	Linked sample				
Area SEP Most disadvantaged	155	122				
2	127	103				
3	96	78				
4 Least	83 65	73 55				
disadvantaged	00	00				

^{*}per 100,000

	Men				
	ASI	MR*	RR		
	Full death file	Linked sample	Full death file	Linked sample	
Area SEP Most disadvantaged	155	122	2.39	2.23	
2	127	103	1.96	1.88	
3	96	78	1.48	1.42	
4	83	73	1.28	1.33	
Least disadvantaged	65	55	1.00	1.00	

^{*}per 100,000

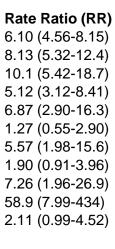
Men				Women			
	ASN	ЛR*	RR		ASMR*		
	Full death	Linked	Full death	Linked	Full death	Linked	
	file	sample	file	sample	file	sample	
Area SEP							
Most disadvantaged	155	122	2.39	2.23	92	67	
2	127	103	1.96	1.88	67	54	
3	96	78	1.48	1.42	54	47	
4	83	73	1.28	1.33	42	42	
Least disadvantaged	65	55	1.00	1.00	36	39	

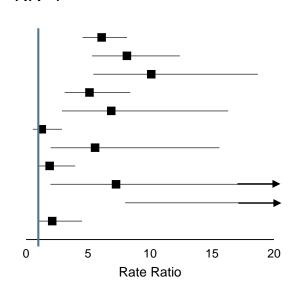
^{*}per 100,000

	Men				Women			
	ASMR*		RR		ASMR*		RR	
	Full death	Linked						
	file	sample	file	sample	file	sample	file	sample
Area SEP								
Most disadvantaged	155	122	2.39	2.23	92	67	2.56	1.72
2	127	103	1.96	1.88	67	54	1.86	1.37
3	96	78	1.48	1.42	54	47	1.51	1.20
4	83	73	1.28	1.33	42	42	1.16	1.08
Least disadvantaged	65	55	1.00	1.00	36	39	1.00	1.00

^{*}per 100,000

Men 25-44 years

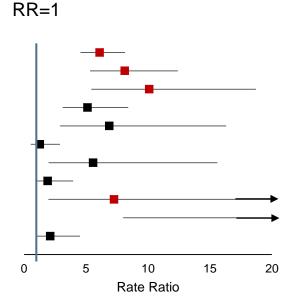

- 1. Suicide
- 2. Accidental poisoning
- 3. Land transport accidents
- 4. Ischaemic heart disease
- 5. Symptoms signs ill defined conditions
- 6. Brain cancer
- 7. Cirrhosis and other liver diseases
- 8. Colorectal cancer
- 9. Assault
- 10. Diabetes
- 10. Lymphoma and leukaemias



Men 25-44 years (low vs high education)

- 1. Suicide
- 2. Accidental poisoning
- 3. Land transport accidents
- 4. Ischaemic heart disease
- 5. Symptoms signs ill defined conditions
- 6. Brain cancer
- 7. Cirrhosis and other liver diseases
- 8. Colorectal cancer
- 9. Assault
- 10. Diabetes
- 10. Lymphoma and leukaemias

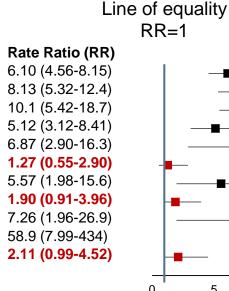
Line of equality RR=1

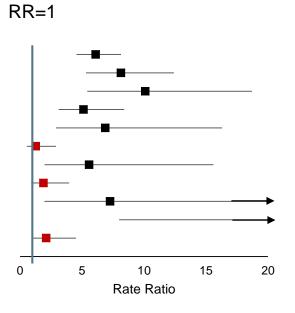


Men 25-44 years (low vs high education)

- 1. Suicide
- 2. Accidental poisoning
- 3. Land transport accidents
- 4. Ischaemic heart disease
- 5. Symptoms signs ill defined conditions
- 6. Brain cancer
- 7. Cirrhosis and other liver diseases
- 8. Colorectal cancer
- 9. Assault
- 10. Diabetes
- 10. Lymphoma and leukaemias

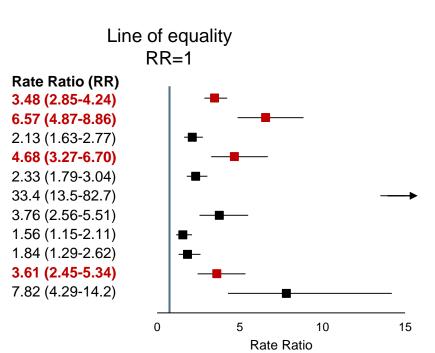
Line of equality
RR=1


Rate Ratio (RR)
6.10 (4.56-8.15)
8.13 (5.32-12.4)
10.1 (5.42-18.7)
5.12 (3.12-8.41)
6.87 (2.90-16.3)
1.27 (0.55-2.90)
5.57 (1.98-15.6)
1.90 (0.91-3.96)
7.26 (1.96-26.9)
58.9 (7.99-434)
2.11 (0.99-4.52)

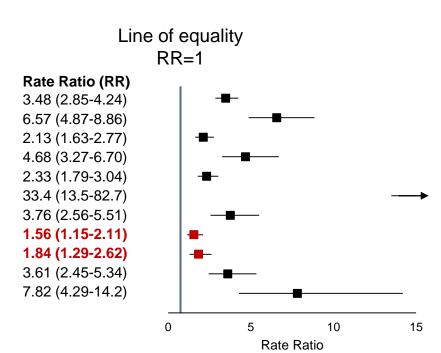


Men 25-44 years (low vs high education)

- 1. Suicide
- 2. Accidental poisoning
- 3. Land transport accidents
- 4. Ischaemic heart disease
- 5. Symptoms signs ill defined conditions
- 6. Brain cancer
- 7. Cirrhosis and other liver diseases
- 8. Colorectal cancer
- 9. Assault
- 10. Diabetes
- 10. Lymphoma and leukaemias



Men 45-64 years (low vs high education)

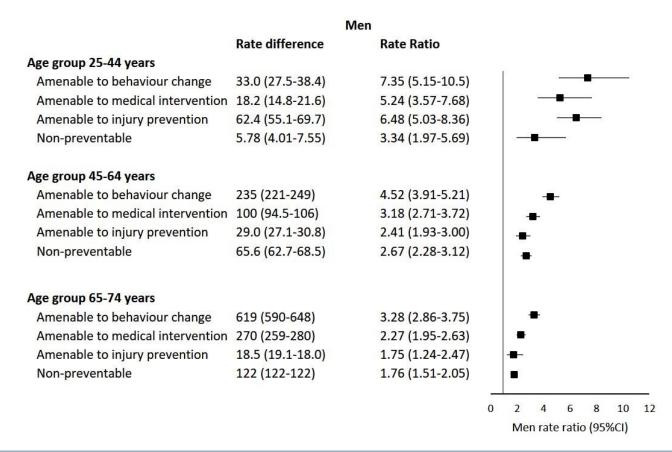

- 1. Ischaemic heart disease
- 2. Cancer of trachea, bronchus and lung
- 3. Suicide
- 4. Cirrhosis and other diseases of the liver
- 5. Colorectal cancer
- 6. Chronic lower respiratory disease
- 7. Liver cancer
- 8. Lymphoma and leukaemias
- 9. Cancer of the pancreas
- 10. Cerebrovascular disease
- 10. Accidental poisoning

Men 45-64 years (low vs high education)

- 1. Ischaemic heart disease
- 2. Cancer of trachea, bronchus and lung
- 3. Suicide
- 4. Cirrhosis and other diseases of the liver
- 5. Colorectal cancer
- 6. Chronic lower respiratory disease
- 7. Liver cancer
- 8. Lymphoma and leukaemias
- 9. Cancer of the pancreas
- 10. Cerebrovascular disease
- 10. Accidental poisoning

Summary

- Data from the MADIP can be used to estimate education-related inequalities in mortality
- ➤ Linked Census and Death Registrations data has high population coverage and good internal validity (except for young women)
- Can be used to highlight opportunities to reduce inequalities and improve health of population
- Also enable Australia to contribute to international comparisons of inequalities in mortality


Questions and comments?

Paper available on MedRxiv

Inequalities according to preventability

